organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

C. R. Girija and Noor Shahina Begum*

Department of Studies in Chemistry, Central College Campus, Bangalore University, Bangalore 560 001, Karnataka, India

Correspondence e-mail: noorsb@rediffmail.com

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.006 Å R factor = 0.057 wR factor = 0.178 Data-to-parameter ratio = 12.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

4-Ammonio-5-chloro-*N*-[2-(*N*,*N*-diethylammonio)ethyl]-2-methoxybenzamide sulfate

The title compound, $C_{14}H_{24}ClN_3O_2^{2+}\cdot SO_4^{2-}$, also known as metoclopramide sulfate, is non-planar, both the molecular and crystal structures being stabilized by N-H···O and C-H···O hydrogen bonds.

Received 9 December 2003 Accepted 22 December 2003 Online 23 January 2004

Comment

The title compound, (I), a substituted benzamide, is a dopamine antagonist clinically used as neuroleptic drug (Pitre & Stradi, 1987). It is also a potential ligand, owing to its significant tendency to coordinate to metals. Its crystal structure is reported here.

In the title molecule (Fig. 1), the C=O group is almost cis with respect to the C1-C6 bond, the torsion angle C6-C1-C11-O12 being $-5.5(5)^{\circ}$. The methoxy group is coplanar with the attached ring. A gauche conformation is observed in an amino ethyl side chain. The geometrical parameters of the molecule are comparable with those in a similar structure (Blaton & Peeters, 1980). An intramolecular hydrogen bond is formed between methoxy O atom O7 and amide H atom H13 (Table 2). This hydrogen bond creates a virtual ringe which may be a key feature for the binding of neuroleptic benzamides to the dopamine receptor (van de Waterbeemd & Testa, 1981). The molecular structure is further stabilized by $N16 - H16 \cdot \cdot \cdot O12$ and $C6-H6\cdots O12$ intramolecular hydrogen bonds. In the crystal structure, the cation and anions

Figure 1

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

Molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Figure 2 Packing of the title molecules, viewed down the *a* axis.

are involved in N-H···O and C-H···O hydrogen bond (Table 2). Further, $Cl10 \cdot \cdot Ol2(1 - x, 1 - y, 1 - z)$ short contacts [3.262 (3) Å] link inversion-related molecules into a dimer (Fig. 2). A short H9C···Cl10 (2.90 Å) interaction is also observed.

Experimental

The title compound (98% pure) was bought from IPCA laboratories. Single crystals were grown from a methanol solution by slow evaporation at room temperature.

Crystal data

$C_{14}H_{24}ClN_{3}O_{2}^{2+} \cdot SO_{4}^{2-}$	$D_x = 1.371 \text{ Mg m}^{-3}$
$M_r = 397.88$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/c$	Cell parameters from 7814
a = 9.1514 (2) Å	reflections
b = 16.5218 (3) Å	$\theta = 2.0-23.3^{\circ}$
c = 12.8524 (3) Å	$\mu = 0.34 \text{ mm}^{-1}$
$\beta = 97.186(1)^{\circ}$	T = 293 (2) K
V = 1927.99 (7) Å ³	Prism, colourless
Z = 4	$0.30 \times 0.25 \times 0.10 \text{ mm}$
Data collection	
Bruker SMART CCD area-detector	1932 reflections with $I > 2\sigma(I)$
diffractometer	$R_{\rm int} = 0.034$
ω scans	$\theta_{\rm max} = 23.3^{\circ}$
Absorption correction: none	$h = -10 \rightarrow 10$
7814 measured reflections	$k = -14 \rightarrow 18$
2768 independent reflections	$l = -13 \rightarrow 14$
Refinement	
Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0961P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.057$	+ 1.029P]
$wR(F^2) = 0.179$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.03	$(\Delta/\sigma)_{\rm max} = 0.004$
2768 reflections	$\Delta \rho_{\rm max} = 0.56 \ {\rm e} \ {\rm \AA}^{-3}$
227 parameters	$\Delta \rho_{\rm min} = -0.28 \text{ e} \text{ Å}^{-3}$
H-atom parameters constrained	Extinction correction: SHELXL97
-	Extinction coefficient: 0.0074 (19)

Table 1		
Selected	geometric parameters	(Å

S1-O1	1.360 (5)	O7-C8	1.428 (5)
S1-O2	1.372 (4)	C11-O12	1.251 (4)
S1-O4	1.389 (5)	C11-N13	1.325 (4)
S1-O3	1.390 (3)	N13-C14	1.456 (5)
C1-C11	1.485 (5)	C15-N16	1.504 (6)
C2-O7	1.350 (4)	N16-C17	1.486 (6)
C4-N9	1.376 (5)	N16-C19	1.532 (6)
C5-Cl10	1.748 (4)		
C2-O7-C8	119.5 (3)	C17-N16-C19	111.6 (4)
C11-N13-C14	123.4 (3)	C15-N16-C19	109.5 (4)
C17-N16-C15	114.4 (4)		
C3-C2-O7-C8	5.4 (5)	C14-C15-N16-C17	150.6 (4)
C6-C1-C11-O12	-5.5(5)	C14-C15-N16-C19	-83.3 (4)
C1-C11-N13-C14	174.7 (4)	C15-N16-C17-C18	-73.7 (6)
C11-N13-C14-C15	73.5 (5)	C15-N16-C19-C20	159.5 (5)
N13-C14-C15-N16	-78.0(5)		

°).

Table 2	
Hydrogen-bonding geometry (Å, °).	

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N13-H13···O7	0.86	2.00	2.658 (4)	132
N16-H16···O12	0.91	1.79	2.665 (4)	160
C6-H6···O12	0.93	2.39	2.735 (4)	102
$N9-H9A\cdots O2^{i}$	0.89	2.45	3.325 (7)	169
N9-H9 B ···O3 ⁱⁱ	0.89	2.51	3.372 (6)	164

Symmetry codes: (i) 2 - x, 1 - y, 1 - z; (ii) x, y, 1 + z.

H atoms were placed at calculated positions (N-H = 0.86–0.91 Å and C-H = 0.93–0.97 Å) and allowed to ride on the atoms to which they are bonded; U_{iso} (H) values were set at $1.5U_{eq}$ (parent) for CH₃ and NH₃ H atoms and $1.2U_{eq}$ (parent) for the remaining H atoms. The highest peak and deepest hole in the final difference map were located at 1.39 and 1.09 Å, respectively, from atom O1. The large U_{eq} values for atoms O1, O2 and O4 indicate a possible disorder in the sulfate anion.

Data collection: *SMART* (Siemens, 1993); cell refinement: *SMART*; data reduction: *SAINT* (Siemens, 1995); program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *PLATON* (Spek, 1990); software used to prepare material for publication: *SHELXL*97.

CRG thanks UGC-FIP for a Teacher fellowship. The authors thank Dr G. U. Kulkarni, JNCASR, for data collection.

References

Blaton, N. M., Peeters, O. M. & De Ranter. C. J. (1980). *Cryst. Struct. Commun.* 9, 857–864.

Pitre, D. & Stradi, R. (1987). Anal. Profiles Drug Subst. 16, 327-360.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.Siemens (1993). SMART. Siemens Analytical X-ray Instruments Inc.,

Madison, Wisconsin, USA.

Siemens (1995). SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Spek, A. L. (1990). Acta Cryst. A46, C-34.

Waterbeemd, H. van de & Testa, B. (1981). Helv. Chim. Acta, 64, 2183-2185.